FORMULAE

Math Tables: Vectors
(Math | Miscellaneous | Vectors)
See also: Vector Definitions
Vector Notation: The lower case letters a-h, l-z denote scalars. Uppercase bold A-Z denote vectors. Lowercase bold ijk denote unit vectors. <a, b>denotes a vector with components a and b. <x1, .., xn>denotes vector with n components of which are x1, x2, x3, ..,xn. |R| denotes the magnitude of the vector R.
|<a, b>| = magnitude of vector = sqrt(a 2+ b 2)
|<x1, .., xn>| = sqrt(x12+ .. + xn2)
<a, b> + <c, d> = <a+c, b+d>
<x1, .., xn> + <y1, .., yn>< x1+y1, .., xn+yn>
<a, b> = <ka, kb>
<x1, .., xn> = <k x1, .., k x2>

<a, b> .<c, d> = ac + bd
<x1, .., xn> .<y1, ..,yn> = x1 y1 + .. + xn yn>
R . S= |R| |S| cos theta(theta = angle between them)
R . SS . R
(a R. (bS) = (ab) R . S
. (S + T)= R . SR . T
. R = |R| 2

|R x S| = |R| |S| sin theta(theta = angle between both vectors). Direction of R x S is perpendicular to A & B and according to the right hand rule.
        | i  j  k |

R x S = | r1 r2 r3 | = / |r2 r3|   |r3 r1|   |r1 r2| \

        | s1 s2 s3 |   \ |s2 s3| , |s3 s1| , |s1 s2| /
S x R = - R x S
(a R) x S = R x (a S) = a (RS)
R x (S + T) = R x S + RT
R x R = 0

If a, b, c = angles between the unit vectors ij,k and R Then the direction cosines are set by:
    COs a = (R . i) / |R|; COs b = (R . j) / |R|; COs c = (R . k) / |R|
|R x S| = Area of parrallagram with sides Rand S.
Component of R in the direction of S = |R|COs theta = (R . S) / |S|(scalar result)
Projection of R in the direction of S = |R|COs theta = (R . SS/ |S| 2 (vector result)

No comments:

Post a Comment